ImageNet 竞赛 2017 是最后一届,WebVision 竞赛或接棒

admin2025年06月17日 04:51:51
阅读:
标签: 时代
分享:

CVPR 2017 研讨会“超越 ILSVRC”将宣布今年是 ImageNet 竞赛正式组织的最后一年,2016 年 ILSVRC 的图像识别错误率已经达到约 2 9%,不仅远远超越人类(5 1%),今后再进行这类竞赛意义也不大了。

  2017 年 7 月 26 日,将标志着一个时代的终结。
 
  那一天,与计算机视觉顶会 CVPR 2017 同期举行的 Workshop——“超越 ILSVRC”(Beyond ImageNet Large Scale Visual Recogition Challenge),将宣布计算机视觉乃至整个人工智能发展史上的里程碑——IamgeNet 大规模视觉识别挑战赛将于 2017 年正式结束,此后将专注于目前尚未解决的问题及以后发展方向。
 
  根据“超越 ILSVRC” Workshop 官网介绍,这堂研讨会的内容主要包括以下 4 点:
 
  发表 2017 年 ILSVRC 的结果
  评估 ILSVRC 2017 图像、视频物体识别、分类的当前最佳结果
  探讨这与当前在计算机视觉产业中应用的最优技术的关系
  受邀讲者(目前确定的有加州大学伯克利分校的 Jitendra Malik,以及斯坦福大学教授、目前谷歌云首席科学家李飞飞)发表讲话,论述在他们看来从认知视觉到机器人视觉等领域存在的挑战
 
  ImageNet:深度学习热潮的关键推动者之一
 
  ImageNet 可以说是计算机视觉研究人员进行大规模物体识别和检测时,最先想到的视觉大数据来源。ImageNet 数据集最初由斯坦福大学李飞飞等人在 CVPR 2009 的一篇论文中推出,并被用于替代 PASCAL 数据集(后者在数据规模和多样性上都不如 ImageNet)和 LabelMe 数据集(在标准化上不如 ImageNet)。
 
  ImageNet 从 Caltech101(2004 年一个专注于图像分类的数据集,也是李飞飞开创的)。ImageNet 不但是计算机视觉发展的重要推动者,也是这一波深度学习热潮的关键驱动力之一。
 
  截至 2016 年,ImageNet 中含有超过 1500 万由人手工注释的图片网址,也就是带标签的图片,标签说明了图片中的内容,超过 2.2 万个类别。其中,至少有 100 万张里面提供了边框(bounding box)。
ImageNet 数据集中“猎狐犬”的部分示例
 
  从 2010 年以来,ImageNet 每年都会举办一次软件竞赛,也即 ImageNet 大规模视觉识别挑战赛(ILSVRC),参赛程序会相互比试,看谁能以最高的正确率对物体和场景进行分类和检测,不仅牵动着产学研三界的心,也是各团队、巨头展示实力的竞技场。
 
  从 2010 年以来,每年的 ILSVRC 都主要包括以下 3 项,后来逐渐增多:
 
  图像分类:算法产生图像中存在的对象类别列表
 
  单物体定位:算法生成一个图像中含有的物体类别的列表,以及轴对齐的边框,边框指示每个物体类别的每个实例的位置和比例
 
  物体检测:算法生成图像中含有的物体类别的列表,以及每个物体类别中每个实例的边框,边框表示这些实例的位置和比例。
 
  2012 年,Alex Krizhevsky、Ilya Sutskever 和 Geoffrey Hinton 创造了一个“大型的深度卷积神经网络”,也即现在众所周知的 AlexNet,赢得了当年的 ILSVRC。这是史上第一次有模型在 ImageNet 数据集表现如此出色。论文中提出的方法,比如数据增强和 dropout,直到现在也在使用,那篇论文“ImageNet Classification with Deep Convolutional Networks”,迄今被引用约 7000 次,被业内普遍视为行业最重要的论文之一,真正展示了 CNN 的优点,并且以破纪录的比赛成绩实打实地做支撑。
 
  2012 年是 CNN 首次实现 Top 5 误差率 15.4% 的一年,当时的次优项误差率为 26.2%。这个表现震惊了整个计算机视觉界。可以说,是自那时起,CNN 才成了家喻户晓的名字。
 
  ImageNet 历届冠军及技术回顾:
 
 
模型 AlexNet ZF Net

GoogLeNet

ResNet
时间(年) 2012 2013 2014 2015 
层数(层) 8 8 22 152
Top 5 错误率 15.4% 11.2% 6.7% 3.57%
数据增强
Dropout    
批量归一化      

 中国团队在 ImageNet 竞赛中的亮眼表现
 
  2016 年的 ILSVRC,来自中国的团队大放异彩:
 
  CUImage(商汤和港中文),Trimps-Soushen(公安部三所),CUvideo(商汤和港中文),HikVision(海康威视),SenseCUSceneParsing(商汤和香港城市大学),NUIST(南京信息工程大学)包揽了各个项目的冠军。
 
  从下图中可见,无论的图像分类、物体检测、物体识别,计算机的正确率都已经远远超越人类。可以说,计算机视觉在感知方面的问题已经得到了很好的解决。
 
  那么,计算机视觉的未来的重点将是什么,ImageNet 竞赛之后,又会出现什么呢?
 
  超越 ILSVRC:侧重图像学习和理解的 WebVision 竞赛
 
  WebVision 数据集是通过苏黎世科技大学计算机视觉实验室的网络数据团队收集的。这一数据集的开发得到了谷歌研究院苏黎世分部的支持。
 
  WebVision 数据集使用与 2012 年 ImageNet 竞赛相同的 1000 个类别,涵盖了直接从网络收集到的 240 万张现代图像(包括谷歌图像搜索中获得的 100 万张,以及来自 Flickr 的 140 万张图像)和元数据。
 
  在 CVPR 2017 上,也会举办 WebVision Challenge,这一比赛更加注重对图像和视频数据的学习和理解,它有可能会成为未来的 ImageNet 竞赛吗?
 
 
  编译来源:
 
  超越 ILSRVC 研讨会介绍:http://image-net.org/challenges/beyond_ilsvrc
 
  WebVision Challenge 介绍:http://www.vision.ee.ethz.ch/webvision/about.html
 
  WebVision Challenge 论文:https://arxiv.org/pdf/1705.05640.pdf

注:本文系作者 admin 授权融媒体发表,并经融媒体编辑,转载请注明出处和本文链接

我要围观…
705人参与 36条评论
  • 最热评论
  • 最新评论
加力那24分钟前 回复284

就是因为病人多,专家少,你还要抓?如果你是一个专家,一天12小时不吃不喝不上厕所给20个病人看病,可是外面排队的病人有100个。

Taso韩先生28分钟前 回复284

就是因为病人多,专家少,你还要抓?如果你是一个专家,一天12小时不吃不喝不上厕所给20个病人看病,可是外面排队的病人有100个。

加力那28分钟前 回复284

就是因为病人多,专家少,你还要抓?如果你是一个专家,一天12小时不吃不喝不上厕所给20个病人看病,可是外面排队的病人有100个。

Taso韩先生24分钟前 回复284

就是因为病人多,专家少,你还要抓?如果你是一个专家,一天12小时不吃不喝不上厕所给20个病人看病,可是外面排队的病人有100个。

admin

关注

现专注于互联网行业—公关领域。兴趣广泛,热爱传统文化,以及看书,闲时写些文字等。

  • 17万阅读量
  • 17万文章数
  • 3评论数
作者文章
  • 菌小宝:从肠道微生态到自然生态,共筑生命平衡的健康未来

  • 菲尔莱:以金融教育为笔,绘就财富管理新画卷

  • 政商联动共话发展,副市长康镇麟一行调研皇家小虎

  • 自如“海燕计划”再启航,助力千万毕业生住进“好房子”

  • 自如“海燕计划”13季启航,携《大闹天宫》助力毕业生租房安居

关于我们 |加入我们 |广告及服务 |提交建议
友情链接
赛迪网 |钛媒体 |虎嗅网 |品途网 |i黑马 |果壳网 |砍柴网 |创业邦 |易观网 |凯恩思 |创业邦 |舆情之家
Copyright©2003-2015 融媒体版权
粤ICP备05052968