哈萨比斯:AI将带来诺奖级突破,但深度学习解决不了通用AI

admin2025年06月20日 06:25:30
阅读:
标签: 奖级 深度 哈萨比斯
分享:

新智元于9月20日在北京国家会议中心举办AI WORLD 2018世界人工智能峰会,邀请机器学习教父、CMU教授 Tom Mitchell,迈克思·泰格马克,周志华,陶大程,陈怡然等AI领袖一起关注机器智能与人类命运

 
 
  DeepMind联合创始人哈萨比斯近日在伦敦经济学人创新峰会上阐述了他对AI未来的展望:AI将拯救我们自己;AI将带来诺贝尔奖级别的科学突破;深度学习不足以破解通用AI问题。哈萨比斯表示,如果未来的世界没有AI,他将对这个世界非常悲观。
 
  震撼!AI WORLD 2018世界人工智能峰会开场视频
 
  由Google DeepMind开发的AlphaGo系统在与人类世界冠军对弈的围棋比赛中大获全胜,打破了人们的预期,即距离计算机打败人类冠军还有很多年的时间。
 
  尽管这一成就意义重大,但DeepMind的联合创始人哈萨比斯(Demis Hassabis)预计,未来几年人工智能改变社会的程度,将使这一成就相形见绌。
 
  哈萨比斯在伦敦经济学人创新峰会上阐述了他对人工智能未来的展望。
DeepMind联合创始人Demis Hassabis
 
  AI将把我们从我们自己手里拯救出来
 
  哈萨比斯说:“如果未来的世界没有AI,我会对这个世界非常悲观。”
 
  “我这么说的原因是,如果你看看社会面临的挑战:气候变化、可持续性、大规模不平等(而且越来越严重)、疾病和医疗问题,我们在所有这些方面的进展都不够快。”
 
  “要么我们需要人类行为的指数级改进——更少自私,更少短期主义,更多合作,更多慷慨——要么我们需要技术的指数级改进。”
 
  “目前的迹象是,如果你看看当前的地缘政治,我认为我们不会很快在人类行为方面得到指数级的改进。”
 
  “这就是我们需要AI这样的技术实现巨大飞跃的原因。”
哈萨比斯在伦敦经济学人创新峰会上
 
  AI将带来诺贝尔奖级别的科学突破
 
  哈萨比斯坚信AI可以抵消人类贪婪和自私的最坏影响,原因在于这项技术可以轻易地应用于解决棘手的问题,比如防止灾难性的气候变化。
 
  “我认为AI是一个非常强大的工具。我最兴奋的是将这些工具应用于科学,并加速突破。”哈萨比斯说。
 
  他说,如今的机器学习和相关的AI技术已经使图像识别和在大量数据中发现模式等任务成为可能。
 
  但哈萨比斯对AI优化任务能力的潜在应用特别感兴趣,如果没有优化,这些任务将会极其复杂。AlphaGo的成功就证明了这一点。
 
  “你可以想象一个巨大的组合空间,你正试图找到一条穿过它的路径。显然,像国际象棋和围棋这样的游戏就是这样,有太多的可能性,你不可能强行推出正确的解决方案。”
 
  “科学中有很多领域都有类似的结构。我想到的是材料和药物设计领域,在这些领域中,研究人员经常要做的就费力地将各种化合物组合在一起,并测试它们的性质。”
 
  哈萨比斯说,材料设计等领域的突破可能会产生深远的影响。
 
  “例如,有人推测,可能存在一种可以彻底改变功率和能量的室温超导体,但我们目前不知道这种化合物是什么。”
 
  “这是让我真正感到非常兴奋的事情,我认为我们将在未来10年看到一些巨大的突破,在其中一些领域将取得可获诺贝尔奖的突破,”哈萨比斯说。
 
  他说,DeepMind正在研究如何将机器学习和其他与AI相关的技术应用到蛋白质折叠和量子化学等领域。
 
  哈萨比斯也承认,这些系统的使用有可能造成伤害,并提出了在某个阶段,在“五到十年的时间”内可能存在一些争论,要求将一些研究排除于公共领域之外,以防止被“坏人”利用。
 
  深度学习不足以解决通用AI
 
  创建一台具有类似于人类智能的机器需要比深度学习系统更广泛的技术,尽管深度学习推动了最近的许多突破。
 
  “深度学习是一项了不起的技术,它本身非常有用,但在我看来,它绝对不足以解决通用AI问题,”哈萨比斯说。
 
  “我认为深度学习是解决通用AI的一个组成部分,也许还需要更多类似深度学习的突破。需要更多的创新。”
 
  “大脑是一个综合系统,但大脑的不同部分负责不同的任务。”
 
  “海马体负责情景记忆,前额叶皮质负责控制,等等。”
 
  “你可以把目前的深度学习看作是相当于大脑中的感觉皮层一样东西:视觉皮质或听觉皮质。”
 
  “但是,真正的智能远不止于此。你必须把它重新组合成更高层次的思维和符号推理,这是80年代经典AI试图解决的问题。”
 
  “你可以这样看待我们的研究项目:我们能否从自己的感知构建,利用深度学习系统,并从基本原则中学习?我们能否一直构建,直到高级思维和符号思维?”
 
  “为了做到这一点,我们需要解决一些问题,比如学习概念。这些问题对于人类来说毫不费力,但我们目前的学习系统却做不到。”
 
  DeepMind正在研究如何在一些领域改进人工智能,将允许系统在现今不可能实现的水平上进行推理,并在不同的领域之间迁移知识,就像一个会驾驶汽车的人可以将开汽车的知识应用来开货车。
 
  例如,DeepMind和德国马格德堡大学的一组神经科学家和人工智能研究人员9月19日在Neuron杂志上发表的一篇研究论文,为了解人类大脑连接单个情景记忆来解决问题方式提供了一个视角。
 
  人类有能力创造性地结合他们的记忆来解决问题并获得新的见解,这个过程依赖于特定事件的记忆,即情景记忆(episodic memory)。虽然情景记忆在过去已经被广泛研究,但目前的理论并不能很容易地解释人们如何利用情景记忆来获得这些新的见解。
 
  DeepMind的研究人员提出了一种新的大脑机制,该机制将允许检索到的记忆以这种方式触发对更多相关记忆的检索。这种机制允许检索多个相连的记忆,这样大脑就能产生类似这样的新见解。研究人员认为,他们的结果可以帮助AI在未来更快地学习。
 
  “我们正试图在新型技术方面取得突破,我们认为这些技术对于概念形成、如何将语言理解引入目前的前语言系统(pre-linguistic system)等方面都是必需的,”哈萨比斯说。
 
  “AlphaGo不理解语言,但我们希望它能建立这种象征性的推理水平——数学、语言和逻辑。因此,这是我们工作的重要部分,”哈萨比斯补充说,DeepMind还致力于研究如何提高学习效率,以减少目前训练深度学习系统所需的庞大数据量。
 
  原文链接:
 
  https://www.techrepublic.com/article/google-deepmind-founder-demis-hassabis-three-truths-about-ai/

注:本文系作者 admin 授权融媒体发表,并经融媒体编辑,转载请注明出处和本文链接

我要围观…
705人参与 36条评论
  • 最热评论
  • 最新评论
加力那24分钟前 回复284

就是因为病人多,专家少,你还要抓?如果你是一个专家,一天12小时不吃不喝不上厕所给20个病人看病,可是外面排队的病人有100个。

Taso韩先生28分钟前 回复284

就是因为病人多,专家少,你还要抓?如果你是一个专家,一天12小时不吃不喝不上厕所给20个病人看病,可是外面排队的病人有100个。

加力那28分钟前 回复284

就是因为病人多,专家少,你还要抓?如果你是一个专家,一天12小时不吃不喝不上厕所给20个病人看病,可是外面排队的病人有100个。

Taso韩先生24分钟前 回复284

就是因为病人多,专家少,你还要抓?如果你是一个专家,一天12小时不吃不喝不上厕所给20个病人看病,可是外面排队的病人有100个。

admin

关注

现专注于互联网行业—公关领域。兴趣广泛,热爱传统文化,以及看书,闲时写些文字等。

  • 17万阅读量
  • 17万文章数
  • 3评论数
作者文章
  • 菌小宝:从肠道微生态到自然生态,共筑生命平衡的健康未来

  • 菲尔莱:以金融教育为笔,绘就财富管理新画卷

  • 政商联动共话发展,副市长康镇麟一行调研皇家小虎

  • 自如“海燕计划”再启航,助力千万毕业生住进“好房子”

  • 自如“海燕计划”13季启航,携《大闹天宫》助力毕业生租房安居

关于我们 |加入我们 |广告及服务 |提交建议
友情链接
赛迪网 |钛媒体 |虎嗅网 |品途网 |i黑马 |果壳网 |砍柴网 |创业邦 |易观网 |凯恩思 |创业邦 |舆情之家
Copyright©2003-2015 融媒体版权
粤ICP备05052968